会议信息
AITest 2022: IEEE International Conference On Artificial Intelligence Testing
https://ieeetests.com/
截稿日期:
2022-05-22 Extended
通知日期:
2022-06-15
会议日期:
2022-08-15
会议地点:
San Francisco, California, USA
届数:
4
浏览: 13450   关注: 2   参加: 0

征稿
Artificial Intelligence (AI) technologies are widely used in computer applications to perform tasks such as monitoring, forecasting, recommending, prediction, and statistical reporting. They are deployed in a variety of systems including driverless vehicles, robot-controlled warehouses, financial forecasting applications, and security enforcement and are increasingly integrated with cloud/fog/edge computing, big data analytics, robotics, Internet-of-Things, mobile computing, smart cities, smart homes, intelligent healthcare, etc. In spite of this dramatic progress, the quality assurance of existing AI application development processes is still far from satisfactory and the demand for being able to show demonstrable levels of confidence in such systems is growing. Software testing is a fundamental, effective and recognized quality assurance method which has shown its cost-effectiveness to ensure the reliability of many complex software systems. However, the adaptation of software testing to the peculiarities of AI applications remains largely unexplored and needs extensive research to be performed. On the other hand, the availability of AI technologies provides an exciting opportunity to improve existing software testing processes, and recent years have shown that machine learning, data mining, knowledge representation, constraint optimization, planning, scheduling, multi-agent systems, etc. have real potential to positively impact on software testing. Recent years have seen a rapid growth of interests in testing AI applications as well as application of AI techniques to software testing. This conference provides an international forum for researchers and practitioners to exchange novel research results, to articulate the problems and challenges from practices, to deepen our understanding of the subject area with new theories, methodologies, techniques, processes models, etc., and to improve the practices with new tools and resources.

Topics Of Interest

The conference invites papers of original research on AI testing and reports of the best practices in the industry as well as the challenges in practice and research. Topics of interest include (but are not limited to) the following:

    Testing AI applications
    Methodologies for testing, verification and validation of AI applications
        Process models for testing AI applications and quality assurance activities and procedures
        Quality models of AI applications and quality attributes of AI applications, such as correctness, reliability, safety, security, accuracy, precision, comprehensibility, explainability, etc.
        Whole lifecycle of AI applications, including analysis, design, development, deployment, operation and evolution
        Quality evaluation and validation of the datasets that are used for building the AI applications
    Techniques for testing AI applications
        Test case design, test data generation, test prioritization, test reduction, etc.
        Metrics and measurements of the adequacy of testing AI applications
        Test oracle for checking the correctness of AI application on test cases
    Tools and environment for automated and semi-automated software testing AI applications for various testing activities and management of testing resources
    Specific concerns of software testing with various specific types of AI technologies and AI applications

    Applications of AI techniques to software testing
    Machine learning applications to software testing, such as test case generation, test effectiveness prediction and optimization, test adequacy improvement, test cost reduction, etc.
    Constraint Programming for test case generation and test suite reduction
    Constraint Scheduling and Optimization for test case prioritization and test execution scheduling
    Crowdsourcing and swarm intelligence in software testing
    Genetic algorithms, search-based techniques and heuristics to optimization of testing

    Data quality evaluation for AI applications
    Automatic data validation tools
    Quality assurance for unstructured training data
    Large-scale unstructured data quality certification
    Techniques for testing deep neural network learning, reinforcement learning and graph learning
最后更新 Dou Sun 在 2022-05-22
相关会议
CCFCOREQUALIS简称全称截稿日期通知日期会议日期
ICSP''International Conference on Intelligent Computing and Signal Processing2024-02-04 2024-04-19
CybermaticsIEEE Cybermatics Congress2024-05-012024-06-012024-08-19
ECBIOSIEEE Eurasia Conference on Biomedical Engineering, Healthcare and Sustainability2022-03-312022-04-152022-05-27
ICITLInternational Conference of Innovative Technologies and Learning2020-04-202020-05-182020-08-24
ESANNEuropean Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning2019-11-182020-01-312020-04-22
AICIS''International Conference on Automation, Intelligent Control and Information Science2024-06-162024-06-232024-07-12
SIoTInternational Symposium on the Internet of Things2024-06-032024-07-222024-10-15
CRETInternational Conference on Control, Robotics Engineering and Technology2022-04-012022-05-012022-08-18
SEAIIEEE International Conference on Software Engineering and Artificial Intelligence2024-05-152024-05-252024-06-21
AIMLAInternational Conference on AI, Machine Learning and Applications2023-02-112023-02-182023-02-25
相关期刊
CCF全称影响因子出版商ISSN
SIGMOD Record ACM0163-5808
Computing and Informatics Institute of Informatics, Slovakia1335-9150
Human-centric Computing and Information SciencesSpringer2192-1962
bJournal of Web Semantics2.100Elsevier1570-8268
bWorld Wide Web2.700Springer1386-145X
Biomedical Signal Processing and Control4.900Elsevier1746-8094
ACM Transactions on Modeling and Performance Evaluation of Computing Systems0.700ACM2376-3639
bACM Transactions on Mathematical Software2.700ACM0098-3500
bSoftware Testing, Verification and Reliability1.500John Wiley & Sons, Ltd1099-1689
Natural Language Processing ResearchAtlantis Press2666-0512
推荐